If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2-134=0
a = 2; b = 0; c = -134;
Δ = b2-4ac
Δ = 02-4·2·(-134)
Δ = 1072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1072}=\sqrt{16*67}=\sqrt{16}*\sqrt{67}=4\sqrt{67}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{67}}{2*2}=\frac{0-4\sqrt{67}}{4} =-\frac{4\sqrt{67}}{4} =-\sqrt{67} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{67}}{2*2}=\frac{0+4\sqrt{67}}{4} =\frac{4\sqrt{67}}{4} =\sqrt{67} $
| x^2-41/14x-2=0 | | 8h=6 | | 19x-15x-3x=8 | | 12.50+.40e=14.75+.25 | | -1/5b-2/5=(-2) | | 3=-15^2+25t | | k+9.5=17.23 | | 20=13+x/x | | -6(-12-12k)=2(11k+11) | | 124+p=831 | | -23m=93 | | 1/4(6t-4)=t-4/8 | | -|-2r-1|=11 | | 6x^2-5=-93 | | 8x-3=-23 | | 57+x=180,x | | -8-(1/3)=-4.5w | | ƒ(-4)=x^2+2x-5 | | 18j+4j-15j-j=14 | | x^2-x-29=9x-5 | | ƒ(-4)=x^2+2x-5= | | -4.5w=-8-1/3 | | x^2+19x+22=8x+4 | | 8x-17+5x+37=17x-4 | | 4/y=-6 | | 2(p^2)+3p-10=0 | | (x2÷2)+(3x÷2)-5=0 | | x^+19x+22=8x+4 | | 4y–3=1 | | 1/2x+5-8/x+4=-5 | | 11/4+21/2=x | | -10x-2=11-9x |